3 (Sem-6) PHY M 2

to rearron hoxim a 2020 mlanes

PHYSICS

man is ten (rojeM) and mention type

Paper: 6.2

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

(Mathematical Methods-IV)

(Marks: 15)

- 1. Answer **any two** from the following:

 1×2=2
 - (a) What is the rank of a tensor which represents a quantity that does not change when axes are rotated?
 - (b) In an N-dimensional space, how many terms is contained in each expression represented by A_p^{ij} B_{ir}^{q} C_{sq}^{rt} ?
 - (c) Evaluate $\delta_m^l \delta_n^m \delta_l^n$ in 4-dimensional space.

Contd.

- 2. Answer **any four** from the following: 2×4=8
 - (a) Show that δ_{ν}^{μ} is an invariant tensor and transforms as a mixed tensor of rank two.
 - (b) If A_{lm}^{ijk} is tensor, test and mention type and rank of tensors A_{ik}^{ijk} , A_{lm}^{ijm} .
 - (c) Illustrate "The inner product of tensors can be thought of as outer product followed by contraction."
 - (d) Show that gradient of a scalar field is a covariant vector.
 - (e) If A_j^i is a mixed tensor of rank two, show that A_j^i is also a tensor.
- 3. Answer **any one** from the following: $5 \times 1 = 5$
 - (a) The Cartesian components of the velocity vector of a fluid in motion in a two-dimensional plane are $v_x = x^2$, $v_y = y^2$. Find the polar components of the velocity vector in terms of polar co-ordinates r, θ .

- (b) The Cartesian components of the acceleration vector are $a_x = \frac{d^2x}{dt^2}$, $a_y = \frac{d^2y}{dt^2}$, $a_3 = \frac{d^2z}{dt^2}$. Find the radial component a_r of the acceleration vector in spherical polar co-ordinates.
- (c) (i) Prove that the sum of two tensors of the same type is also a tensor.
 - (ii) If $A_{\lambda\mu}$ is a skew-symmetric tensor, show that

$$(B_{\nu}^{\mu} B_{\tau}^{\sigma} + B_{\tau}^{\mu} B_{\nu}^{\sigma}) A_{\mu\sigma} = 0.$$
 2

(Solid State Physics)

(Marks: 45)

- 4. Choose the correct answer from the following: 1×7=7
 - (a) Crystalline state is a
 - (i) low energy state
 - (ii) high energy state
 - (iii) medium energy state
 - (iv) None of the above

- (b) Coordination number of NaCl structure is:
 - (i) 8

 - (iii) 10
- ector in spherical polacito (vi) hales.
 - (c) In solids the strongest bond is—
 - (i) ionic on since on to
 - (ii) covalent
 - (iii) metallic work 10219
 - (iv) hydrogen
 - (d) According to Quantum theory of free electrons, the molar specific heat of free electron is—
- $C_v = \frac{3}{2}Nk$
 - (ii) $C_v = (0.01) \frac{3}{2} Nk$
 - (iii) $C_{\nu} = (0.01)Nk$
 - (iv) $C_v = (0.001)\frac{3}{2}Nk$

- (e) The magnetic susceptibility χ of a superconductor has—
 - (i) a positive value
 - (ii) $\chi \to 0$ as $T \to T_c$
 - (iii) $\chi \to \infty$ as $T \to T_c$
 - (iv) a negative value
- (f) Hysteresis is a property of
 - (i) paramagnetic substances
 - (ii) ferromagnetic substances
 - (iii) diamagnetic substances
 - (iv) all of them
- (g) One Bohr Magneton is equal to—
 - (i) 9.27×10^{-24} amp m^2
 - (ii) $9.27 \times 10^{-24} \text{ amp/m}^2$
 - (iii) $9.27 \times 10^{-24} \, amp/cm^2$
 - (iv) 9.27×10^{-24} amp cm²

- 5. Give very short answers of the following questions: 2×4=8
 - (a) Calculate the packing factor for SC structure.
 - (b) Deduce a relation between the density of crystalline material and lattice constant in a cubic lattice.
 - (c) A paramagnetic material has a magnetic field strength of 10⁴A/m. If the susceptibility of the material at room temperature is 3.7×10⁻³, calculate the magnetization and flux density of the material.
 - (d) State Bloch theorem.
- 6. Give short answers of the following questions: (any two)
 - (a) Write down Bragg's law in X-ray diffraction and define the different terms used in the equation. From the equation estimate the wavelength of X-ray that can be used for analysis of crystal diffraction. What is glancing angle?

 2+2+1=5

- (b) What are Miller indices? How are they determined? Explain with the help of an example. 1+4=5
- (c) Explain Meissner effect. Outline some applications of superconductivity.

2+3=5

- (d) What do you mean by p-type and n-type semiconductor? How does the conductivity of semiconductor vary with temperature? Show schematically the position of Fermi level at OK in p-type and n-type semiconductor. 2+1+2=5
- 7. Answer the following questions:
 - (a) What do you mean by cohesive energy? Evaluate Madelung constant for an infinitely long one-dimensional ionic crystal consisting of singly charged alternate positive and negative ions. State the significance of Madelung constant. 2+6+2=10

- (b) On the basis of Weiss theory, obtain Curie-Weiss law. Show that ferromagnetic substances become paramagnetic above a critical temperature. 8+2=10
 - (c) Write short note on: (any one) 10
 - (i) Intrinsic and extrinsic semiconductors
- (ii) Kronig-Penney model
 - (iii) Different types of crystal bonding