3 (Sem-3) PHY M 1

2018

PHYSICS

(Major)

Paper: 3.1

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Mathematical Methods)

(Marks : 25)

- 1. Answer the following questions: 1×3=3
 - (a) What do you mean by nilpotent matrix?
 - (b) What is the condition for a symmetric matrix to be a Hermitian matrix?
 - (c) What is unitary matrix?
- 2. Find the rank of the matrix

 $\begin{pmatrix}
1 & 2 & 0 \\
2 & 4 & 0 \\
4 & 8 & 0
\end{pmatrix}$

2

3. Answer any two of the following questions:

 $5 \times 2 = 10$

(a) (i) Prove that the trace of the product of a symmetric and an anti-symmetric matrix is zero.

2

(ii) Find the inverse of the matrix

$$\begin{pmatrix}
3 & -1 & 1 \\
-15 & -6 & -5 \\
6 & -2 & 2
\end{pmatrix}$$

3

(b) (i) What are proper and improper orthogonal matrices?

2

(ii) Prove that every non-singular square matrix has a unique inverse.

3

(c) (i) Show that every characteristic vector of a matrix has a unique characteristic root.

(

(ii) Find the matrix B such that A = BC, if

 $A = \begin{pmatrix} 2 & 3 & -2 \\ 4 & -1 & -2 \\ 0 & 1 & 0 \end{pmatrix} \text{ and } C = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & -1 \\ -1 & 2 & 1 \end{pmatrix}$ 3

4. Answer either (a) and (b) or (c) and (d):

 $5 \times 2 = 10$

- (a) State and prove Cayley-Hamilton theorem. 5
- (b) Find the eigenvalue and eigenvector of the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{pmatrix}$$

(c) If three matrices A, B and C are given by

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

and
$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

prove that $D^2 = A^2 + B^2 + C^2 = 2I$ 5

(d) Using schematic diagram, obtain the two-dimensional rotational matrix.

GROUP-B

(Electrostatics)

(Marks : 35)

- **5.** Choose the correct answer/Answer the following questions: 1×3=3
 - (a) The relation $D = \varepsilon E$ is true for
 - (i) any medium
 - (ii) homogenous medium
 - (iii) isotropic medium
 - (iv) homogenous and isotropic media
 - (b) The induced surface charge q' is related to q as

(i)
$$q' = \frac{q}{k}$$

(ii)
$$q' = q$$

(iii)
$$q' = q\left(1 - \frac{1}{k}\right)$$

(iv)
$$q'=q(1-k)$$

(where k is dielectric constant)

- The unit of electric potential in terms of (c) base unit of SI is
 - (i) kgm²S⁻¹
 - (ii) kgm²S⁻¹A⁻¹
 - (iii) kgm²S⁻²
 - (iv) kgm²S⁻³A⁻¹
- Answer the following questions: $2\times3=6$

- (a) What do you mean by equipotential surfaces?
- If the electric field is given by (b) E = 8x + 4y + 3z, calculate the electric flux through a surface of area 100 units lying in the x-y plane.
- What is the acceleration of a charged (c) particle of mass m and charge q placed in an electric field E?
- **7.** Answer any *two* of the following questions: $3 \times 2 = 6$
 - (a) Calculate the electrostatic energy of a system of charged particles.

- (b) A sphere of radius R is connected by wire with a smaller sphere of radius r. If the spheres were charged with Q and q respectively, show that the electric field is higher at the surface of the smaller sphere.
 - (c) The potential of a certain charge configuration is expressed by $V = 2x + 3xy + y^2$ volt. Find the electric intensity at point (5, 2). What acceleration does an electron experience in the *x*-direction?

8. Answer any two questions:

10×2=20

(a) (i) Find an expression for the electric field intensity at an axial point of a charged disc.

5

(ii) What is the principle of 'method of images'? A charge Q is placed in front of an earthed conducting sphere of radius R. Calculate the potential and the field at a general point (r, θ) .

5

(b)	(i)	Using Gauss' law, find an	
	- 4	expression for electric field in a	
		uniformly charged sphere.	5
	(ii)	Using Laplace's equation, obtain	
		the expressions for potential and	
		electric field intensity between two	
		parallel planes.	5
(c)	(i)	State and prove the differential	
		form of Gauss' law in dielectric.	5
	(ii)	Establish the Clausius-Mossotti	
		relation using Laplace equations.	5