Application of Laplace's Equation to Spherical Symmetry

Introduction

Laplace's equation is a second-order partial differential equation that plays a crucial role in various fields such as electrostatics, fluid dynamics, and gravitational theory. It is given by:
$\nabla^{2} \phi=0$
where ϕ is a scalar potential function. In spherical coordinates (r, θ, ϕ), Laplace's equation is particularly useful for problems exhibiting spherical symmetry.

Spherical Coordinates

In spherical coordinates, the Laplacian operator is expressed as:

$$
\nabla^{2} \phi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \phi}{\partial \theta} \downarrow \vdash \frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \phi}{\partial \phi^{2}}\right.
$$

For problems with spherical symmetry, the potential ϕ depends only on the radial coordinate r, simplifying the equation to:
$\nabla^{2} \phi=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi}{d r}\right)=0$

Solution to Laplace's Equation in Spherical Symmetry

To solve this, we integrate the equation twice. First, we integrate with respect to r :
$\frac{d}{d r}\left(r^{2} \frac{d \phi}{d r}\right)=0$

Integrating once gives:
$r^{2} \frac{d \phi}{d r}=C_{1}$
where C_{1} is a constant of integration. Integrating again with respect to r :
$\frac{d \phi}{d r}=\frac{C_{1}}{r^{2}}$
where C_{1} is a constant of integration. Integrating again with respect to r :
$\frac{d \phi}{d r}=\frac{C_{1}}{r^{2}}$
$\phi(r)=-\frac{C_{1}}{r}+C_{2}$
where C_{2} is another constant of integration. Hence, the general solution to Laplace's equation in spherical symmetry is:
$\phi(r)=\frac{A}{r}+B$
where $A=-C_{1}$ and $B=C_{2}$.

Physical Interpretation and Boundary Conditions

The constants A and B are determined by the boundary conditions of the specific physical problem. For instance, in electrostatics, ϕ might represent the electric potential due to a point charge. If the potential approaches zero at infinity, B is zerc. \downarrow there is a charge Q at the origin, $\phi(r)=\frac{Q}{4 \pi \epsilon_{0} r}$.

Example: Electrostatic Potential

Consider the electrostatic potential outside a spherical charge distribution. The boundary condition might be that the potential at the surface of the sphere of radius R is $\phi(R)=\phi_{0}$. Applying this boundary condition:
$\phi(R)=\frac{A}{R}+B=\phi_{0}$
If we also know that the potential must vanish at infinity $(\phi(\infty)=0)$, then $B=0$. Thus,
$\phi(r)=\frac{A}{r}$
Solving for A using the boundary condition at $r=R$,
$\phi_{0}=\frac{A}{R}$
$A=\phi_{0} R$

Therefore, the potential is:
$\phi(r)=\phi_{0} R / r$
Conclusion

Laplace's equation in spherical symmetry simplifies significantly and is pivotal in solving many physical problems, particularly in electrostatics. By leveraging the symmetry of the problem, we reduce a complex partial differential equation to a more manageable form, yielding insights into the behavior of physical systems.

