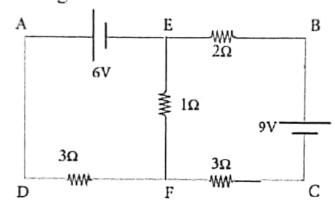
Class: B. Sc. **2nd** Semester Subject: Physics (CORE)

Tim	ne: 1 Hour 20 Minutes	Full Marks: 30			
Ans	wer any Six:	$6 \times 5 = 30$			
1.	Define electric flux. Calculate the flux passing thro	ugh the area			
	$\vec{A} = 2\hat{i} + 6\hat{j}m^2$ kept in an electric field $\vec{E} = 2\hat{j} + 4$	$\hat{k} \frac{N}{C}$. 1+4=5			
2.	State and establish Gauss's law of electrostatics.				
3.	Calculate the electric field near a charged linear rod of an				
	infinite length.	5			
4.	What is a differential equation? Write order and de-	egree of			
	the differential equation:	1+2+2=5			
•	i) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 8y = 0$ ii) $\left[1 + \left(\frac{dy}{dx}\right)^2\right]$	$\int_{0}^{3/2} = 5 \frac{d^2 y}{dx^2}$			
5.	Write the standard form of a linear differential equa	ition.			
	Solve the equation $\frac{dy}{dx} + 5y = 0$	1 + 4 = 5			
6	Draw the parallel LCR-circuit and find the express	ion for			
	admittance of the circuit.	2 + 3 = 5			
7.	Find an expression of magnetic vector potential.	5			
8.	Using Biot-Savart law, find the magnetic field due	to an			
	infinitely long straight current carrying conductor.	5			
9.	Find the expression of torque of a current loop in a uniform				
	magnetic field.	. 5			
10.	Why series LCR-circuit is called acceptor circuit?				

Explain the terms of resonance and quality factor.

2 + 3 = 5

Class: B. Sc. 2nd Semester Subject: Physics (SEC-2)


Time: 1 Hour 20 Minutes

Full Marks: 30

Answer any Six.

 $6 \times 5 = 30$

- Write short note on Resistor and Capacitor.
- State Kirchoff's Current and Voltage laws.
- Calculate the current that flows in the 1Ω resistor in the following circuit.

- 4. Explain in details the fabrication of PCB.
- 5. Draw and explain half wave rectifier.
- 6. What is digital multimeter? Write its uses.
- 7. Explain in details the tools used in soldering technique.
- 8. Write short note on:
 - i) Vernier Callipers
 - ii) Screw Gauge
- Draw the circuit diagram and write the principle of regulator power supply.
- 10. State Ohm's law. A potential difference across 24 Ω resistor is 12 V. What is the current through the resistor?

Class: B. Sc. **2nd** Semester Subject: Physics (MDC-2)

(Natural and Physical Science in Everyday Life)

Time: 1 Hour 20 Minutes

Full Marks: 30

Write short note on any Eight:

 $8 \times 5 = 40$

- 1. Carbohydrates
- Proteins
- 3. Vitamins and Minerals
- Pesticides
- Green House Effect
- 6. Acid Rain
- Nuclear Energy
- 8. Waste water treatment
- 9. Renewable and Non Renewable energy sources
- 10. Future fuel
- 11. Corrosion
- 12. Pollutants and contaminants

भूद और भूद और और और और और और

Class: B. Sc. 4th Semester Subject: Physics (Honours) Paper: PHY-HC-4016 (Mathematical Physics-III)

Time: 1 Hour 20 Minutes

Full Marks: 30

Answer any Six:

a do

 $6 \times 5 = 30$

- What is a complex number? Write the different representations of complex number.
- 2. What is organd diagram? Represent $z_i = 2 + i$, $z_2 = 2 i$ in an organd diagram.
- Define analytic function. Verify whether the function $f(z) = z^*$ is analytic.
- 4 State and establish the Cauchy-Riemann conditions.
- 5. Use Cauchy-Riemann conditions to verify the analyticity of the function $f(z) = z^2$.
- 6. Find f'(z) if $f(z) = \frac{1+z}{1-z}$. Also determine whether f(z) is not analytic.
- 7. State Taylor Series. Expand $\frac{e^z}{(z-1)^2}$ about z=1 using Laurent Series.
- 8. Find residue of the function $f(z) = \frac{z^2}{z^2 + a^2}$
- 9 Evaluate $\int_0^{2\pi} (1 + \sin \theta) d\theta$ using Residue theorem.
- 10. Find $\int_0^\infty \frac{dx}{1 \neq x^2}$

Class:	В.	Sc.	4th	Seme	ster
Subjec	t:I	hys	sics (Hono	urs)
Pane	or :	DH	V_LI	$C_{-}402$	6

Paper : PH Y-HC-4026

(Elements of Modern Physics)

Time: 1 Hour 20 Minutes Full Marks: 30 Answer any six: $6 \times 5 = 30$ What do you mean by photoelectric effect? Derive Einstein's 1. photoelectric equation. 1 + 4 = 52. Explain Davisson-Germer experiment. 5 3. How did de Broglie relate wave nature with particle nature? What do you mean by matter wave? 3 + 2 = 5Explain wave packets. 4. 5 Explain Blackbody Radiation in light of Quantum Theory. 5. 5 State the law of Radioactivity and derive it 6. mathematically. 1 + 4 = 5Deduce the semi-empirical mass formula. 7. 5 Write the similarities between liquid drops and a nucleus. 8. 5 What is mass defect and binding energy? Why electron is not 9. taken as a consequent of a nucleus. 2 + 3 = 510. Write the two properties of nuclear forces. Shaw that nuclear density is independent of the mass number. 2 + 3 = 5

Class: B. Sc. 4th Semester Subject: Physics (Honours)

Paper: PHY-HC-4036

(Analog System & Application)

Time: 1 Hour 20 Minutes Full Marks: 30

Answer any Six:

 $6 \times 5 = 30$

- Define the term Feedback in amplifier. Write the difference between Positive feedback and Negative feedback.
- 2. Explain slew rate and Virtual groun.
- Explain an Integrator amplifier by using an OPAMP.
- 4. Explain differential amplifier by using an OPAMP.
- 5. Draw the circuit diagram and explain Hartley oscillators.
- 6. Define Current gain in CB and CE- transistor. Establish a relation between α and β.
- Establish an expression of Voltage gain with feedback.
- 8. Explain zero- crossing detector.
- Distinguish between Class-A, Class-B and Class-C amplifier.
- 10. What is dc load line? What is the importance of it?

और और भीर भीर और भीर भीर भीर भीर भीर

Class: B. Sc. 4th Semester Subject: Physics (Generic) Paper: PHY-HG-4016

(Waves and optics)

Time: 1 Hour 20 Minutes

Full Marks: 30

Answer any six:

 $5 \times 6 = 30$

- Show that fringes in Young's double slit experiment are equally spaced.
- What are the methods for producing coherent sources?
 Write the difference between fringes produced by Biprism and Lloyd's mirror?
 2 + 3 = 5
- Using Stoke's treatment show that the reflection coefficient for rarer to denser medium and the same for denser to rarer medium are numerically equal but of opposite sign.
- 4. What is diffraction? Write the difference between Fresnel and Fraunhofer's diffraction. 1 + 4 = 5
- 5. What are plane, circularly and elliptically polarized light?

1 + 2 + 2 = 5

- 6. State Huygen's Principle. State wavefront and write their properties. 2 + 1 + 2 = 5
- 7. State and explain superposition principle.

2 + 3 = 5

- Derive the resultant wave equation due to superposition between two SHMs of same frequency.
- 9. Establish Fourier series.
- 10. Define group velocity and phase velocity. Derive the relation between them. 1 + 1 + 3 = 5

Class: B, Sc. 6th Semester Subject: Physics (Honours) Paper: PHY-HC-6016

(Electromagnetic Theory)

Time: 1 Hour 20 Minutes

Full Marks: 30

Answer any Six:

 $6 \times 5 = 30$

Give short answer:

- $1 \times 5 = 5$
- a) Write a difference between conduction current and displacement current.
- b) What do you mean by isotropic medium?
- c) Write the expression for vector potential.
- d) What is a plane wave?
- e) Write the relation between μ_0 , ϵ_0 and c.
- 2. Write the physical significance of displacement current. What does the equation $\vec{k} \cdot \vec{E} = 0$ signify in electromagnetic wave propagation?
- State the Maxwell's equations and write their physical significance.
- Establish the Poynting theorem.
- 5. Establish the electromagnetic wave equation in free space.
- Using Fresnel's relation, discuss the phenomenon of total internal reflection for electric vector polarized perpendicular to the plane of incidence.
- 7. What is skin depth? Derive its expression for a conducting medium.
- Calculate the Poynting vector from a 100W lamp at a distance 1m from it.
- Show that in electromagnetic wave the electrostatic energy density is equal to the magnetic energy density.
- Find the expression for the velocity of electromagnetic wave in free space.

ofe spit spit spit spit spit spit

Class: B. Sc. 6th Semester

Subject: Physics (Honours)

Paper: PHY-HC-6026

(Statistical Mechanics)

Time: 1 Hour 20 Minutes

Full Marks: 30

Answer any Six:

 $6 \times 5 = 30$

- What is Phase space? Distinguish between micro state and macro state.
- Deduce Maxwell-Boltzmann distribution law.
- 3. Deduce Fermi-Dirac distribution law
- 4. Establish the relation, S=K log w.
- Establish an expression of Partition function.
- 6. Explain Bose Einstein Condensation.
- 7. What is Gibbs paradox? Explain it.
- 8. Deduce Bose derivation of Planck's law.
- 9. Give the compression of MB, BE and FD statistics.
- Find thermodynamic functions of a strongly Degenerate Bose Gas.

Class: B. Sc. 6th Semester Subject: Physics (Honours) Paper: PHY-HE-6046

(Astronomy and Astrophysics)

Tin	ne: 1 Hour 20 Minutes	Full Marks:	30	
1.	Give a brief outlines on active Galaxy.		5	
2.	Draw Hubble's tuning fork diagram for the morph	ologyof		
	galaxies and also give a short introduction on it.		5	
3.	What do you mean by spiral, elliptical and lenticul	ar		
	galaxcies.		5	
4.	What is the name of the centre of the Milky Way galaxy?			
	Explain briefly the properties of the centre of the			
	Milky Way galaxy.	1 + 4 =	5	
5.	What do you mean by distance ladder in cosmolog	gy.	5	
6.	What is the full form of SMBH? Explain it briefly.	1 + 4 =	5	
7.	Write about the existence of black holes in galaxies	S. :	5	
8.	Define the terms CS and ecliptic.	3 + 2 = 3	5	
9.	What do you mean by vernal equinox and autumna	l		
2.2	equinox?	2 + 3 = 5	5	
10.	Write a note on dark matter.	5	;	

Class: B. Sc. 6th Semester Subject: Physics (Honours) Paper: PHY-HE-6056

(Classical Dynamics)

Time: 1 Hour 20 Minutes

Full Marks: 30

Answer any six:

 $6 \times 5 = 30$

- State D'Alembert's Principle and established.
- What are generalized co-ordinates? Express velocity in terms of generalized co-ordinates.
- Using Lagrange's equation, find the equation of motion of a simple pendulum.
- State the principle of virtual work. Give the physical significance of Hamiltonian (H).
- Find the Hamilton's canonical equation of motion.
- Using Hamiltonian's equation find the equation of one dimensional harmonic oscillator.
- Find the Lagrange's equations of motion for two coupled oscillators.
- Write down the Lorentz transformation equations. Show that for values of V<<C; Lorentz transformation reduces to the Galilean transformation.
- Write the postulates of Special Theory of Relativity.
 Write about Twin Paradox.
- Using Lorentz transformation equations obtain Lorentz contraction formula.
